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AND THE STRUCTURE OF THE SET OF UNSTABLE CANONICAL SYSTEMS
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Introduction

|

We will consider a system of 2k linear differential equations

with periodic coefficients in canonical form
Cdx T, -
”‘717=1H<t)".5| ,, (0.1)

where H(t) is a symmetric matrix of piecewise continuous real

periodic functions with period 1,

P s —

Ey is fhe unit matrix of ordérfﬁ; and x is a vector. Such systems,
which are very important in applications, were studied by various
authors [1-12] and others. The basic results were obtained by M. G.
Kreyn [1-6].

The problems which are encountered in applications have the
following character. The coefficients of system (0.1) are functions
of certain "structural" parameters. They must be selected 1n such
a way that all solutions of system (0.1) are bounded as t - « (the
corresponding motion is stable) or in such a way that among the solu-
tions there are unbounded solutions (unstable motion), or in such a

way that the solutions satisfy the inequality

x@I<Ce, ool (0.2)
for a given o > 0, etc. Sometimes, it is required to construct in
parameter space the corresponding regions or at least clarify where

these regions 1lie.

Sometimes the coefficients in system (0.1) (allior some of them)
are not known exactly,for example only their upper and lower bounds

¥Numbers in the margin indicate pagination in the foreign text.



are known. Certain conclusions must be made with regard to the
boundedness or unboundedness of the solutions or the relative rate of

increase of the solutions as t - o,

We note that such bounds present certain difficulties even
in systems with constant coefficients, when the system is integrated
in explicit form (if we have in mind efficient solutions).

The stability and instability criteria, and the estimates .of [;lﬂ
the characteristic exponent give, to some extent, an answer to the
problems posed. At the present time, there are many known stability
criteria for system (0.1) (efficient and "exact" sufficient stability
conditions), but there are considerably fewer instability criteria,
and practically no estimates for the characteristic exponents.

In order to compare the various criteria and to understand
them, 1t 1s advantageous to study from the above point of view
(boundedness, unboundedness, etc. of the solutions) the entire
‘set of systems (0.1). This is also advantageous because the para-
meters may enter the cocefficlents of system (0.1) in various ways.
By studying the functional space ;§\='{H(t)} we can reach certain
conclusions about the stability andwinstability regions in parameter
space in each concrete case. Such é study was undertaken in the
work of I.M. Gel'fand and V.B. Lidskiy [7]. It was shown in Ref. 7
that the set of all "strongly stable'" matrices H(t) decomposes in
'@\ into g denumerable number of regions, and it. is explained ‘by. which
properties of the solutions the systems (0.1) are characterized in

a particular stability region.

Our main purpose will be to study the structure of the set of
all unstable systems (0L1l),.and also the set of systems whose solu-
tions satisfy the bound (0.2). In fact, we solve a much more general
problem, which is related to the study of the group of real simplectic
matrices, a problem which is formulated at the end of the introduc-
tion. Having solved this problem, we will be able to answer questions
of the following type: What is the structure of the set of matrices
H(t) for which the systems (0.1) have j, 0 € J € k linearly indepen-

dent solutions with characteristic exponents d in the interval
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0« ay < o < aq where the numbers oy, @y are given, and j linearly

independent solutions with characterist%c exponents -a, —al<-@<-qol ;
and 2k - 2j linearly independent solutions which are bounded both as
t > oand as t + -» ? It is possible to define for the first j char-
acteristic exponents various bounds, and to impose certain conditions

on the bounds of the solution, etc.

By studying the structure of this set of "stable" and "unstable"
systems (0.1), we will arrive naturally at a general method which
Will be used to obtain sufficient stability and instability conditions,
a topic which is the subject matter of this article.

We will use in the discussion which follows the following
notation:
Ut transpose of matrix
U¥ transposed complex-conjugate matrix,
E unit matrix,
if H is a real symmetric or Hermitian matrix (H¥ = H), then /315

e mjaxm. |

where h., are the eigenvalues of the matrix H, and for an arbitrary

J
Hl/H==sqﬂ%§%.h

matrix U -
For real symmetric or Hermitian  matrices Hl’ H2, the inequality
H; <« H, denotes that (H;a, a) s‘(Hza, a) for all vectors a.

We will state the fundamental definitions and assumptions mainly
due to M.G. Kreyn, which will be used below.

I. The matrix X(t) of the fundamental system of solutions of
system (0.1) determined from the condition X(0) = E is called the
matricant of system (0.1). The value of the matricant in the period

lThis condition follows from the previous condition, since system
(0.1) has for the solution with characteristic exponent o also a
solution with characteristic exponent -a.



X(1) is called the monodromy matrix of system (0.1). The eigen-
values of the monodromy matrix are called the multipliers of system
(0.1). '

II. The matrix X(t) for any t is simplectic, i.e., it satisfies
the relation X¥IX = I. The group of all reél simpleétic matrices
will be denoted by Y8} . The spectrum of a simplectic matrix is
symmetric with respect to the real axis and with respect to the unit
Sphere, 1.e. the eigenvalues of a s1mplectlc matrix decompose into

the pairs el¢ -1¢ 16

e , the pairs y and u 1, and the quadruples re™",
-i¢ -1 i¢ -1 _-1¢
re , P e T, r e (r, ¢, u are real). The multiplicity of the

eigenvalues which are equal to 1 and -1 1is necessarily even.

ITI. The eigenvalues of a simplectic matrix X which lie on the
unit circle are divided into eigenvalues of the first and second
kind.

Let. p = ei¢ be a simple eigenvalue of the matrix X and a be.'the
corresponding eigenvector Xa = el®a.  Then [5],(1/i)(Ia,a) is a real
number which is different from zero. The eigenvalue p = ei¢is called
an eigenvalue of the first kind if (1/i)(Ia,a) > 0, and of the second
kind, if (1/i)(Ia,a) f¢0. From the above, we can easily derive that
i

the eigenvalues p = e and p¥ = e_1¢ are of opposite kinds.

Let p = ei¢ be an eigenvalue of multiplicity m and iigjthe cor-
responding subspace of roots. We assume that on_?fa the Hermitian form
(1/;)(Ix,x) is diagonalized with m; positive and m, negative squares.

On fzﬂ?, the form (1/i)(Ix,x) is non-singular, therefore my + m, = m.

In this case, we say that m4 eigenvalues of the first kind and m2

eigenvalues of the second kind coincide. In particular, if ingg, I¢ /316
1

is an eigenvalue of the first (second) kind of multiplicity m. In

the last case, simple elementary divisors n of matrix-X XE coerrespond

the form (1/i)(Ix,x) is positive (negative) definite, then p = e

——

k)

to the eigenvalue p, i.e. in the invariant subspace <| ‘the matrix
X is reduced to diagonal form.

If at the point p = e1¢, my eigenvalues of the first kind and

mo, eigenvalues of the second kind coincide, then at the point p* = e_l¢’

4



m eigenvalues of the first kind and mq eigenvalues of the second

20
kind coincide.

Below, 1t will also be convenient to consider eigenvalues which
lie in the interior of the unit circle in-:terms of eigenvalues of
the first kind and those which lie outside .this circle in terms of
eigenvalues of the second kind. "Thus, the simplectic/matrix X has-k

elgenvalues of the first kind and k eigenvalues of the second kind.

’

The multipliers, like the eigenvalues of the monodromy matrix,
are also classified into multipliers of the first and second kind.
The multipliers can also be defined equivalently in another way (M.
G. XKreyn [5], Par. 4, I.M. Gel'fand and V.B. Lidskiy [7], p. 7).

IV.- Let y be aclosed contour in fhe complex plane which 1s
symmetric With respect to the unit circle which does not pass through
the eigenvalues of the simplectic matrix X. Let PQJ be a subspace
of dimension m which is the union of the subspaces which correspond
to the eigenvalues which lie in the contour y. The subspace;QQJ will
be nondegenerate under the metric (1/i)(Ix,x). Let P be it§ pgojection
matrix. The number my eigenvalues of the first kind and the number

ﬂm2;eigenvalues of the second kind which lie ©On the contour y are
equal, respectively, to the number of positive and negative elgen-

values of the Hermitian 'matrix

Lpip=lip=1Pl ] (0.3)
S : : L . -

The matrix P can be defined using the formula derived by M.G. Kreyn:

B 1 -, __1

Instead of the contour y, any contour can be used which contains part

of the spectrum and which is symmetric with respect to the unit
sphere.

V. System (0.1) is said to be stable if all its solutions
are bounded as t » », If, in addition to this, all systems with
matrices Hl(?) sufficlently close to H(t) have this property,



then system (0.1) is said to be strongly stable.?

System (0.1) is said to be unstable if among its solutions /317

solutions exist which are not bounded as t » = and strongly unstable
if this is also valid for all systems with matrices Hl(t) which are
sufficiently close to H(t).

A necessary and sufficient condition that system (0.1) be stable
is that all its multipliers lie on the unit circle and that they cor-

respond to simple elementary divisorsof the matrix.

A necessary and sufficient condition that system (0.1) be stable
is that all its multipliers lie on the unit circle and that among
them there be no repeated multipliers of various kinds [5-7].

A necessary and sufficient condition that system (0.1) be
strongly stable is that at least one of its multipliers do not 1lie

on the unit circle.

We will consider the case of
a system of equations of order
greater than two, k > 1 (of course,
the discussion is also valid for
k = 1). The case of a system con-
sisting of two equations has been
studied in sufficient detail from
various points of view [2, 4, 5, 8,
9-12]. For the case k = 1, the

entire presentation which follows

can be made very concise (see [7], Par. 9, and [12], Par. 3). The
group @ for k = 1 is homeomorphic to the interior of & torus. (see
Fig. 1). The matricant X(t) is a trajectory in @lwhich starts at

2Closeness is understood in the sense of the distance

,-.___— i —_ —Q. ‘
. f.(ffx. ) =j‘n Hy(t)y=— Hn 3] dt,]
S

This definition is due to I.M, Geltfand.



the point E; conversely, any (plecewise . smooth) trajectory defines
some system (Q.1l). The stability or instability of system (0.1) is
only determined by the monodromy matrix, i.e. the end of the trajec-
tory X(t). All strongly stable ends X(1) lie in the regionsvé?}and
‘EF{, and all unstable ends X(1) in the region ;%+,§?? . The common
-boundaries of these regions (the "cones" It and T-) consist of matrices
for which the multipliers of the first and second kind coincide (for
k = 1l,this can -only . happen at the points p = 1 and p = ~1). The set
of strongly stable (strongly unstable) trajectories X(t) decomposes
into classes of trajectories which can"be deformed into one another:-
pbntinuously without displacing the end from the corresponding region
\Eﬁ‘aﬂ (or %+ 1]). These trajectories form the stability and in-
;tability regions in the functional space 1@’=4{H(t)}.

Our problem will be to clarify the analogous picture in the
case k > 1, We note once more that the structure of the stability
regions has been studied in [7]. In Ref. 7, it was also shown that
in the general case the group @ Jis "similar" to the interior of
a torus, it is homeomorphic to the topological product of the circle
with the. connected and simply connected topological space.

The difficulties which arise when the set of unstable systems
(0.1) is studied are the following. In the stable case, the mono-
dromy matrix is always reduced to diagonal form; in the unstable [;lg
case, the monodromy matrix may have a complex canonical structure.

We will consider, as was done in Ref. 7, the curves in the group

@f and the deformations of these curves. In the unstable case, the
canonical structure of the monodromy matrices along such curves can
change in a variety of ways. This makes all proofs extremely com-
plex and forces us, in contrast to Ref. 7, to develop a certain formal
apparatus. In particular, we will introduce the topological space

£, in which, roughly speaking, the poilnt z is the set of all eigen-
values of the matrix X (taking into consideration the kind of elgen-
value), and we will determine the properties of the mapping z = z(X).

The main problem which we will solve in this article is as
follows. Let 93! be some region in &,/ its image in @] , and'M

7



a set of matrices H(t) for which Egq. (0.1) has a monodromy matrix

in C@ﬁ. We must clarify the structure of the sets @[ and m . We
will show that 9| ts always a domain, andsm] decomposes into a

finite or‘couhtable number of regions whieh depend on certaln proper-
ties of the set M| (see below, Theorem 4.2, Par. 4). In other
words, our main problem will be the study of the structure of the:

set of systems (0.1), whose multipliers have certain given properties.

1. Fundamental Definitions and Lemmas

1. We denoteiby «Q\='{H(t)} the linear space of matrices in
(0.1), with norm -SHH(QHdQ‘\ by :%\the set of matrices H(t) which
0 ] .-
correspond to the strongly unstable systems (0.1),by A@ﬁ the set of

matrices H(t) which correspond to the strongly stable systems (0.1),
and by Ty, their common boundary.

" ]and 7 |are open sets and g’;>=0U—I‘oL-J%’.}

Let X(t), 0 £ t € 1 be the trajectory in the group of real
simpleétic matrices (3@which begins at E, X(0) = E, which has the
property that dX/dt is a piecewise.-cbntinuoﬁs function of t. The
set of all such. - trajectories will be denoted by ®().|

To each matrix H(QE@\ corresponds the matricant X(nE@Mﬂ( of
the equation (0.1). The converse proposition is also valid ([7],
.ALemme_;, p. 12). This correspondence will be a homeomorphism ifin the
set ®m distance is defined according to the formula
7 Xy Xo) —fHX (£) — X, (t)“dt—;—j 4= é‘:’i,dt
(see, for example, [12], p. 38-39).

Sets corresponding in @Nﬂ\

by the same letters.

It follows from Par. V in the introduction that only the end
of the trajectory'ﬂX(ffC@] determines whether X(t) belongs to ‘the
sets 0,97»Pd-‘ The corresponding sets in (3\w111 be denoted by /319
5;5?JTA (see also the table below). Thus,X(Q{xﬂ, if AKIK;?%
ete.



Let Prs v Py be the eigenvalues of the first kind of the
matrix . Then the numbers pil, ceey pil will be its eigen-

values'of tﬁe second kind.

The symbol 7 = g(X) will denote the set of all eigenvalues of

the matrix X taking into account their “kind. o .. The set
of all similar ¢ will be denoted by . In other words, an element ¢
Of the set I is the 'set of 2k complex numbers Pisees Py _ (multi-

1

pliers of the first kind) and pz s eees p;l

(multipliers of the
second kind) which satisfy the conditions:

1) 0 < lpjl < 1 (for multipliers of the first kind);

2) if T is a multiplier of the first kind in ¢ andlpj] <1,
then also ﬂEC.,

Thus, on the intervals (-1, 0) and (0, 1) of the real axis and
on the unit circle, the multipliers of the first kind can. be in
arbitrary positions, but in the region'Wl<j;gm#dthey are symmetric
with respect to the real axis. i

We will write:
C={on..-,04 pl—l,...,gk—l])

entering first multipliers of the first kind, and then multipliers
of the second kind. The order in which the multipliers of the first

kind are written is immaterial: The elements

@ |

G={py,--- 10} (pi)‘l,...,(p;)‘l}/ and G = {o ... e ()7
are considered ldentical if a substitution
< L, 2,... ¢k
exists, such that ﬂ¥=dj(ﬁ=l,2..”k)\

We introduce a natural topology in I: an e-neighborhood of the
point G=1f...,o;..")] ‘Will be the set ofiall (= (p---rp"--) €5|such that
LI%;—@ind\ where sy, ..., s, is an arbitrary permutation of the <
numbers 1, ..., k. I becomes then .a topological space.



From the "identity" multipliers of the first (and consequently
the second) kind which were introduced above, w~ »~wve the following:
If Q(t)={pl(t),...,pk(t);..,},Ostsl is a closed curve in the space I,the
Dg(t) are not necessarily closéd curves in the complex plane. Only
fﬁ1)=PW“D will hold where sy, ..., 5, is a permutation of the
numbers 1, ..., k. We must adopt a definition of the symbol ¢,
i.e., have "identity" multipliers of one kind, such that if the
matrix X describes a closed curve in the group @ﬂ, then in general /320

its eigenvalues do not describe closed curves in the complex plane.

We will adopt the following notation. Let M| be a set in %l.
The set of corresponding monodromy matrices will be denoted by fﬁﬁ,

N

Mc® . The corresponding set in I will be denoted by@@,ﬁﬁ==f@ﬁ)

In addition to the sets 555%,?@.@,5%,ﬁ4, we will consider the
sets uu,ﬁw/ﬁ,a:QQJcorresponding to the systems (0.1), whose solutions
satisfy the bound (0.2), i.e. whose multipliers lie in the interior
of the circle with radius e%, and the sets'wu,Ah,A%Jcorfesponding
to the systems (O.I), for which at least one-multiplier lies outside
the circle of radius e2 > 1 (the solutions of these systems do not
satisfy the bound (0.2)). ’

We summarize the notation which was introduced in the table:

on the unit circle (strong instability]

, TE———
oo Bn={x0) ®s{x) | xa{d) ‘

: 1 : N i v [ .

| | | A1l multipliers lie on the unit
o ' & é" circle and there are no repeated
© E ‘multipliers of different kinds
[ ' (strong stability).
| P % 5 o Multipliers exist which do not 1lie

|
!
- l A1l multipliers lie on the unit
T, - T, T, Ty { circle; there are no repeated multi-
: C ‘ pliers of different kinds.
Ii Among the multipliers, there are

repeated multipliers of different
kinds.

[Table continued on following page. ]
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{

A1l multipliers lie in the interior

my, . m, M. | m, of the circle with radius e > 1
- o (bound (0.2) holds)
M, M, -+ M | m; || Among the multipliers, there are

multipliers which lie in the exterior
S of the circle with radius e® > 1°
SRR PSR {/ (estimate’ (0.2) doés not hold

!

This table also contains the set P(f, f), which we will encounter

below.

2. Below, we will need certain comparatively sophisticated
properties of the mapping ¢ = z(X) (see Par. 2, Theorem 2.4) which
we could only prove by using a canonical decomposition of the real
simplectic matrices X. Before we state the theorem which formulates
this decomposition, we will state a theorem about the canonical de-
composition of matrices of the form IH, where I is a skew symmetric
non-singular matrix, and H is a symmetric real matrix, since this
theorem is related directly to canonical systems of the type (0.1).
Both theorems will be stated without proof, since their proofs
differ only slightly from the proofs for analogous propositions (see
A.I. Mal'tsev [13], p. 346-417).

We will consider a real simplectic space\',@j, i.e. a real

vector space of dimension 2k, with the inner product /321

‘(t y) = (Gx, ) = );g”lyp
K '

where G = ||gij|| is a non-singular real skew symmetric matrix.

The operators K, whose matrices have, in the given basis, the

form
K = ¢ 1H

where H' = H is a real symmetric matrix, are skew symmetric operators
in the space 1@5\ o o
(Kx,4y) = (Hx, y) = _4(.x’ Ky )B

11



Below, we will always denote by Qa(a) the Jordan form:

ae00...0
Qae 0...0
0Q0Qace...0
Q@@= . . .....|
- |0000...¢
0000...aj"

Theorem 1.1.19. The élgﬁenfarydivisprs of the matrix G—lH-AE

may be of four different types:
I) elementarydivisorsof the form A2m
II) the pairs (»— )", Q-+k0mjwith Ao real,
III) the pairs(1+ﬂ?fl(k—40)»‘P#0{
IV) the fourtupleS(ki“jzﬂ) a0, B=#9] (m is an integer,
¢, o, B are real numbers).
20,
elementary divisors of type II), III) or a fourtuple of the form IV)

To each elementary divisor of type I) or to the pairs of

corresponds a certain subspace which is invariant with respect to
the operator K. All these subspaces are orthogonal and nondegenerate un-
‘Ger the metric <x, y>. The entire space @fcan be decomposed .into (/¥

the direct sum of these subspaces.

30, In each subspace €| , a basis can be chosen, in which the
matrix K, of the operator K and the Gramm matrix Gj have the follow-

J
ing form: (0 0 00 —1)
l 170 0... 01 .0
; C 1o .0...—10 0
I ) Ky=Q0). G="1 | e
| ' o —1. 00 O
‘ N 0... 00 O )
"{ N 0 ) 0
‘1UIQ==<Q (M) ‘>. G,::i( 0)
0 —Qc(h) ~E
respectively, where the sign for Gj can be chosen arbilitrarily; /322
) K, = ( - ‘*’) q,=e(,<' ) {0 To]
| Q(CP) 0 —N O o 1

AT - o

12



€, = 1 or -1, which is determined by the properties of the operator

0
K. By selecting appropriately the sign of ¢, we can have €y = 1

- : L ' :
Iv) K,=(P 0 ) ihere p=(Q_=(°‘> PE D! 0;( 0 g)
A\ =P L\ BE Q@) \—F0

(here, P, E are matrices of order 2m, Kj’ Gj are matrices of order im).

To a change of basis

fo= 2 8i/%

R

(s = Ilsij|| is an arbitrary non-singular real matrix) corresponds
a . transformation of the Gramm matrix G = ||<ei,ej>||and the matrix
of the operator K:

G. = TTGT, K, = T IKT

1 1

where T = ST. Therefore, Theorem 1.1 can be stated as follows:

There exists a real non-singular matrix T, such that the matrices
716" 8T and TTGT can be - factored into matrices Kj,-Gj having

the form shown above:
TG HT =K. ® K, D ... ,

TtGT:Gl@Gz@ e s
dx

If the system 7

— G~'Hyx,

where G, H are real, det G '# 0, G' = -G, H' = H, is a canonical
system, .heorem 1.1 states that such system with constant coefficients
can be reduced by the appropriate transformation

x = Ty

with a real non-singular matrix T to a system which can be decom-

posed into a number of canonical systems

d |
=Ky, K= GTIHJ

13



where the matrices Kj and Gj have the form which was stated in the
theorem. 1In particular, system (0.1) with constant coefficients

can be transformed in this manner (for system (0.1), G = -1 = -I).

We will associate with a subspace of type III) the elemen- /323
| o = 1, and —(£ie)"/ , if eg = -1 and
¢ > 0. The system of elementary divisors in which the elementary
-divisors (Aii@m/, ¢ > 0 have a definite sign, will be referred to

 tary divisors (lii?y7 , if ¢

as the system.of elementary divisors for which the sign is defined
(see A.I. Mal'tsev [13], Par. 4). Thus, the structure of the can-
onical decomposition of the matrix G-lH is completely determined by
the system of elementary divisors for which the sign has been defined.

The operator X is said to be symplectic if for all'a,igﬁ

(Xa, Xb)=(a,b}).

The matrix X of the symplﬁctic Ooperator in a basis where G 1s the
Gramm matrix which satisfies the relation

x'6x = @ (1.1)
is called G—orthogonal.3 In particular, if G = 171 o -I, this
relation becomes

XT1X = 1

i.e. X is a simplectic or I-orthogonal matrix,;¥€@.’ _
| -1

It can be easily verified that the matrices e F satisfy the
relation (1.1), if H' = H.

Theorem 1.2.10. The matrices of the symplectic operators can

have four_types of elementary divisors:
1) &0 or oy ;)
II) the pairs @_-pgi”a-iyfﬁﬁ] with ug real,
III) the pairs (\—e)™, (A +e'*)™)
IV) the fourtuples fO-fﬁfﬂ?Vﬁ O;—ffgiﬁf;z (m is an integer, ¢,
r > 0 are real numbers). -

3Only an I-orthogonal matrix will be called a symplectic matrix.
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20. To each elementary divisor of type I) or palrs of ele-

* mentary divisors of type II), III) or each fourtuple: of type IV)
corresponds a subspace which is invarlant with respect to the
operator X. All these subspaces are orthogonal and nondegenerate un-

-der the metric <x, y> . The entire space G_can be decomposed into

.a direct sum of these subspaces.

30. In each subspace (@(, a basis can be selected in which

the matrix Xj of the operatar X and the Gramm matrix Gj have,
respectively, the form:

(0 0... 00 —I) /324
| 0 0... 01 ol
N -
D xmee®? Gel2 0 T O
IO—I... 00 ol.
{1 0... 00 0

(a plus corresponds to the elementary divisor (A - 1)™ and a minus
to the elementary divisor (A + 1)M;)-

‘3 ) X;=sign pO7eK’,

where : ‘ - A . _ .
. e (A 0 ! _ 0 E
.Kj==<Q(O) 1), ho=1In|pol, Gj=i< . O),
0 et/ - £
where the sign of Gj can be chosen arbitrarily;
- 1IT) AXj=.exp< — (‘P))=('COSQ () —sin QE‘(?)),
o Qe 0/ \sinQe(s)  cos Qi)
| e 0...01\
Gj='80. ! , N= 0 .o s 1 O :
) \N_N O/ C e e
‘ = - . N\l ...00

€y = +1 which is determined by the property of the transformation X.
By selecting_the sign of ¢ appropriately, we can have €y = 1,

f-IV) X, = e’ O;), :P=<Qs(a) —@E)’ Gj=-}_' ‘0 £ |
\ 0" ‘ el Qe(a) \=F 0

!

a==Inr,

15



and the sign of Gj can be chosen arbitrarily.

It follows from Theorem 1.2, as before, that for any symplectio
matrix X a real matrix T can be found such that the matrices T—1XT
and T'GT factor simultaneously into the- matrices Xj’ G of

the -form given above:

T IXT X1®X @X:}é}l
TGT Gl@G‘!@GI}@

In particular, if the matrix X is reduced to diagonal form,
this decomposition has the form:

' ' e
TXT = (”“ )@e’”’ D ( 0 s m
. 0 po 7l

o]

(1.2)
T'Gé‘:f/—l@’ealn"l@ > Ez) ‘
; 2_. . - » -—-Egl ’

0

Here, we wrote out the three possible factors and /325

'li.z’—': 0 —1 ‘ e,ﬂ;; Cos @ “-'Sillf.p), E'z::‘(l 0)'
! 0 Sin(P Cos © 01

To the factor eI2¢ corresponds an eigenvalue of the first kind ei¢

and an eigenvalue of the second kind e_i¢, if €y ~ 1, and vice versa
if €y = -1. Therefore, 1f in decomposition (1.2) we denote by ¢

the argument of the multiplier of the first kind, then €y = 1.

Remark. If we embed Q\in a complex vector space, then the
subspace of type III) can be decomposed into the direct sum of two
complex cyclic subspaces which correspond to the eigenvalues el¢

-i¢

ordinate matrix has the form ( EE)

and e In the first subspace, we can select a basis whose co-

(each column defines the coordi-

nates of the vector. This baéis is not cyclic but it is convenient
in the sense that o
( 0 —Q (9);

e‘ Q (%) 0 ).( E _ E ‘ eiQs (%)
~ -——tE _lE .

16



The Gramm matrix of the form L(hgxyzﬁ(o—&,ii‘ has in this basis
13

H
the form: T T

1 E\ [0 =N E
— &g . . . =260N.
é —iE)] \N 0] \—iE o

Let us denote by m the dimenslion of the subspace under considera-

tion (the dimension of the matrix N). If m = 2m, 1s even, then N has

1
my eigenvalues which are equal to 1 and my eigenvalues which are equal
to -1. Thus, in this case, regardless of €g5My elgenvalues of the

first kind and m, eigenvalues of the second kind will coincide at

the point p = el%. The same holds also for the point p = e_i¢,_]

' a4\

except that the corresponding coordinate matrix has the form (59.\
If m =

2m1 + 1 1s odd, N has mq + 1 eigenvalues which are equal
to 1, and mq eigenvalues which are equal to -1. Thus, in this case,

when €9 = 1, my + 1 eigenvalues of the first kind and my eigenvalues

of the second kind coincide at the point p = el¢.

-i¢

Conversely, at

the point p = e my + 1 eigenvalues of the second kind and m

1
elgenvalues of the first kind coincide. The converse is true when
€y = -1.

We will prove that by choking appropriately the sign of ¢ we
can always have €g = 1. In fact, if €g = -1, we must make a change

of basis in the subspace of type III), which leads to the transfor-

mations ) . : N '
exp| 2 (¢) .T__:exp( L /326
Qs(‘?) 0 N —‘Qe<‘{’)' 0
N\ - {0 =N\ -
—N O N 0 )
It suffices if we take [ ,L E 0. -
=(o —E)

17



We will state certain corollaries of Theorem 1.2.

1. To each F%EAcorresponds a matrix‘ Xegﬂsuch that ¢t = z(X).
For X, we can always take a matrix which was reduced to diagonal

form.

We denote the right members of the decompositions (1.2) by X'
and G'. For the given g, we select the corresponding matrix X'.
We must prove that for an appropriate choice of the matrix T the
matrix ¥ = TX'T L
singular skew symmetric matrices G' and G", we can always find a

will belong to @ . No matter what the real non-

real non-singular matrix T, such that G" = TIG!'T. The latter follows
from the fact that all spaces of the same dimension with a non-
singular skew symmetric metric which have the same field for the
coefficients are isomorphic. (See A.I. Mal'tsev [13], p. 349). N
T =

= G'. Since the matrix X' is G'-orthogonal, X'TG'X' = G', the matrix

Therefore, we can find a non-singular real matrix T such that TTI”

X will be I-l—orthogonal, i.e. X€®), and by construction ¢(X) = z. ’
2. The group“@:is connected.

This statement is proved simply in [7], but it can also be
derived from the canonical decomposition. In fact, every matrix Xj
can be connected continuously with the unit matrix without changing
its structure. Then the matrix T_IXT, and consequently also X are
connectéd continuously with the unit matrix. This means that the

groupvéi is connected.

In the work of I.M. Gel'fand and V.B. Lidskiy [7], the important

concept of an argument of a simplectic matrix was introduced.4

uWe will state this definition for the convenience of the reader. Any

real non-singular matrix X can be represented in the form X = SU, where
S is a real symmetric positive-definite matrix, and U is an orthogonal

matrix. If X is a simplectic matrix, the matrices S and U will also

be simplectic. An orthogonal simplectic matrix U of order 2k can be

written in the form uyp - up

v ='(u2 Ul)
where uy, up are matrices of order k. The matrix w = g% + duo is
unitary, w.w¥ = Ey. Therefore, |detw| = 1, det w = eld., The

number ¢ is called the argument of the simplectic matrix X [7].

18



We will call the argument of (= {py, ... @ Pi» --- .0 )| the sum /327
of the arguments of the multiplieréréfwfhe first kind: »
- |
Arg L= Y Arg oy
j=1
In exactly the same way, the argument of the simplectic matrix X
will be the sum of the afguments of its eigenvalués of the first
kind. Thus,
ArgX = Argr(X)
Below (Par. 2, Theorem 2.1) we will prove, without using the
concept of an argument, that z(X) is a continuous Qpnctlon of X.
Thus, if X(t) is a continuous curve in the group Ykﬂ we can re- 7
number the multipliers of the first kind pj(t) so that pj(t) will
be continuous functions. Thus, even though ArgX is a mgltivalued
function,
‘IArg-X-z(Argl\’)o-}—an (m=0, +1, £2, ... )Z\ (1.3)

-

t'he increment in the argument

EngmmzA@Xuy—Agx«;}

along any continuous curve is determined uniquely.

It follows from (1.3) that the increment in the argument along

the closed curve X(t), 0 < t < 1is a multiple off 2m: ,

Arg X ()] o=2mm On=0@thi21”).\

Theorem 1.3. A necessary and sufficient condition that the
curves Xl(t) and X (t), 0< t <1 with common endpoints in the
group ; @;]be deformed5 into one another without displacing the ends is:

A deformation of the curve Xj(t) into the curve Xp(t), 0 € t < 1 is

a matrix of functions X(t,s), 0 < t,s € 1 which is continuous over the
set t, s such that X(t,0) = X1(t,1) = Xp(t). Curves which have common
endp01nts and which can be deformed continuously one into another
without displacing the endpoints will be called homotoplc

19



Arg X, (1) ‘la=Argxs<t>lé.\ (1.4)

In particular, the closed curve X(t), 0 £ t €« 1 can be contracted
into a point if and only if Afg/\(f)\l3=0 f

This statement was proved in the work of I.M. Gel'fand and
V.B. Lidskiy [7] for the argument which was introduced in this
paper. We denote by ArgOX the argument of the symplectic matrix X
as defined in Ref. 7.6 Tt suffices to show that equality (1.4)
is equivalent to the equality

Let Xl(O) = X2(O) = X',,Xl(l) = X2(1) = X", X'pX" .is the curve
Xl(t) and X'qX" is the curve X2(t) (see Fig. 2). We denote by

X(t), O £ t € 1 the curve X'pX"gX'
| [ xen | gor OSESE,
C X ()= ' 1 _
1

The change in the argument -
along the curve X(t) is a multi-
) ple of 2m., Let

Argo X (t) b = 2zm.

(1.6)

For any m closed curves U(m)(t), 0« t € 1 exist, such that

- _ A .
Arg U™ (#) |} = Arg, U™ (1) I(‘)=2“;\ (1.7)
In fact, this condition is satisfied, for example, for the

curve ([7], p. 27):
[See following page.]

6i.e., ¢ = ArgpX (see reference on previous page).
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! cos2wnn  f : — sin 2rmt - —
1 o 0 g

o 100 O‘
- sin 2zmt cos 2nmt ' . . (1.8)
)‘ 0o : 1
| A :
[ R BRI e
| > 0 0

T T T T e e

(the empty entries have zeros).

We select an arbitrary poiﬁt Uy = U(m)(to) and we connect it by
“,the curve UOrX' with the point X' (this is possible, since the group
'@} is connected).

We denote by V(t), 0. t &« 1 the closed curve UOrX'pX"qX'rUO
(see Fig. 2). Clearly, ,
%M&V@$=N&X0m=dmﬂj

Thus, \Athm”U)%¥;AQ%V(dﬁ and the curves U(m>(t) and V(t) are ’
nomotopic. =~ Since for a continuous deformation with fixed endpoints,

the increment in the argument (Arg) does not change,
ArgV () = Arg U™ (t) lo:\ :
. _ ) ] S , -4‘”___ eV O]
According to (1.7), ArgV(t) = 2mm. Since ArgX(f) g 0 \

Arg X (t) b= 2nim. (1.9)

If condition (1.4) is satisfied, m = 0 in formula (1.9), and
(1.5) follows from (1.6). This means that the curves can be deformed
continuously into one another without displacing the endpoints. /329
If (1.4) is not satisfied, then in formula (1.9), and consequently.
in (1.6) m # 0, i.e. (1.5) is not satisified and the deformation
can not be carried out. This proves the theorem.7

ZWe note that in addition to the usual properties of ArgX we used in
this proof only equality (1.7). Therefore, ArgX can be defined in
many ways which are equivalent in the sense that each definition
will satisfy Theorem (1.3).
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2. Properties of the Mapping ¢z = g(X)

Theorem 2.1. The mapping ¢z = z(X) is continuous.8

Proof. We select an arbitrary matrix K}E@&Jand we let

S (XNo) ::-Co‘f_——v{gl,:. . pk;'efl, U pk—]};l

e -

We enclose all o |p | # 1 by circles Yy with radii which are

so small that they do not intersect one another and the unit circle.
All pj on the unit circle are .enclosed by circles which do not
intersect with the circles which were drawn earlier and with one
another., Let Py be a value of pj and Yo be the corresponding circle.
If the matrix X is sufficiently close to Xo, then the number of
eigenvalues of the matrix X in the interior of Yo will be equal to
the multiplicity of Po: Suppose that [pol = 1, and that my multi-
pliers of the first kind and m, multipliers of the second kind
coincided at the point Po- We must prove that for the matrices X
which are sufficiently close to XO there will also be my multipliers
of the first kind and m, multipliers of the second kind in the
interior of Yg-

We denote by PO the projection matrix of thesubspaceZ%]of roots -
of the matrix XO and by P the projection matrix of the subspace which
is the union of the. root subspaces é%”of the eigeéenvalues P((ﬂof the
matrix X. If the matrlx X is sufficiently close to XO, the matrix

P is also close to P, (see Introduction, formula (0.4)). Then the
number of positive and negative eigenvalues of the matrices (1/i)IP0
and (1/1)IP coincides, and is equal to, respectively, m; and m,.

This means that among the elgenvalues ﬁiﬁmlthere are exactly my of
the first kind and My of the second kind. The analogous statement

is obvious for the eigenvalues which do not lie on the unit circle.
Thus, for a sufficiently small neighborhood OC6 (a certain set of

circles which were constructed), and consequently also for any

S&t is obvious that the eigenvalues of the matrix X are continuous

functions of X. We must prove, roughly speaking, that the types of
eigenvalues depend also continuously on X.
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neighborhood OC of the point o, we can find a neighborhood OXO of
the point X, €®,[ , such that F{O&ﬁ:OgA , which proves the theorem.

Theorem 2.2. The set of matricesike@xﬁatisfying Eq. ¢(X) = to
is connected in the group '@p9 »

Prog¢f. Let c(Xl) = C(Xg) = zo. We will show that a continu- /330
ous curve X(t), 0 € t € 1 exlsts which connects X, and X,, which
has the property that g|X(t)| = Co-

1. Both matrices Xl and X2 are reduced to diagonal form. Since
for the matrices Xl and X2 the systems of eigenvalues a n d ‘
their kind coincide, in the canonical decomposition (152) the right
members coincide for the matrices X1 and X2. (With the condition
that in (1.2) ¢ denotes the argument of a multiplier of the first
kind; then ey = 1 and the matrix G = 171.) Thus,

o T, =T X T THUTTa=Til T S\

Letting U = T Tgl, we have:10

Xo=UTXU, UIU=1. / ) (2.1)
The' second relation shows that U is a simplectic matrixﬁUE@L\

Let Xl and X2 be arbitrary symplectic matrices which satisfy
relation (2.1). We will show that the eigenvalues and
their kind coincide for the matr'ices'Xl and X,.

.9Here and.below, connectedness 1s defined in the "narrow" sense:
A set R:@\ is said to be connected if any two points 1n agﬂcan be
connectéd insﬁ\ by a continuous curve. .

19

lOWe also note that from Theorem (1.2) using the same arguments from
which (2.1) was obtained, we can derive the following proposition:

A necessary and suffilcient condition that X, = U-1X1U, where X7, Xo,
U are simplectic matrices is that the systems of elementary divisors
whose signs have been determined coincide for the matrices X; and Xp.
(in analogous statement can be found in [13], p. 416.) It is easily
seen that Theorem (1.2) can also be derived from this statement.

In the subsequent proof, this theorem must be proved first. The

same applies also to Theorem(1.1).
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This is obvious for the eigenvalues p, |p| # 1. Let p be
a simple eigenvalue of the matrix Xl’ le| = 1 and Xla = pa. We
introduce the notation
b = Ua

Then, from (2.1), we have |

X b ’ and |
from which our statement follows. =~ i

51‘ (16, b) = L‘ (la, a),
We will now assume that p is an eigenvalue of the matrix Xl

of multiplicity greater than one, |p| = 1, where VZA is the cor-

responding subspace of roots and 815 85y eey B i1s a basis in

the subspace. Then it follows from (2.1) that g, =—ug| is the root .. -

subspace fgr the eigenvalue p of the matrix X2. If we take as the

basis in ;;ﬁ\the vectors bj = Uaj, j=1,2, ..., m) we obtain the

result that the Gramm matrices of the quadratic form (1/1i)(Ix,x)

coincide in the subspaces 1?* and ﬁ{i&

B

R S R e

+

Thus, these matrices have the same number of positive and negative /331
eigenvalues. This means that the same number of eigenvalues of the
first and second kind of the matrices Xl and X2 coincided at the
point p. '

We prove that for arbitrary'ix;rxég@' (2.1) implies ;(Xl) =
= z(X;). o |

Let again X1 and X2 be given matrices. Since Fgﬂis a connected
set, there exists a»curvei?@fﬁéﬁf%éfjgdi}which connects the matrix U
- with the unit matrix E. Then, as fhe first relation in (2.1) im-
plies, the curve X(t) = U(t)_leU(t) will connect the matrices X
and X

1
in the group @4. Since the relations

X (t) ;.U(t)‘}XlU(t)‘, Uyly =1, ﬂ

PR -

are satisfied, which are analogous to the relations (2.1), we have,

2

in accordance with what was proved above, the result that the
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elgenvalues together with their kind, coincide for the matrices.
X, and X(t):

X O] =X = co.\

2)At least one of the matrices Xy and X2 1s not reduced to
diagonal form. In this case, the statement of the theorem follows
immediately from the fact that any matrix fgjﬂgrcqn~be connected by a
COntinuousrc@nveﬁwhich?remainS’“~the set ¢{X) = ¢, with a matrix
which is reduced to diagonal form. In fact, to do this in the
cano?ifal decomposition given by Theorem 1.2, 1in all matrices 11
HQEW%NQﬁ?L-QaQJ,Ciﬁ?j € must be connected continuously with zero.

This proves Theorem 2.2.

An important point in Theorem 2.2 is that z(X) denotes the set
of eigenvalues taking into account their kind. Thus, if Xl and X2
have the same eigenvalues (or even the same Jordan form), then
generally Xl and X2 cannot be fconnected in the group @@3without
shifting the eigenvalues. Let us consider, for example, the similar
matrices of order two X1 = eI¢ and X2 = e_I¢, 0 < ¢ <-ﬂ. Let
X(t) be a continuous curve with the same eigenvalues, i.e. X(t) =
- R(t)el®R(t)™L, such that x(0) = eT®, x(1) = e71%. Since R(t) is
a matrix whose columns are the real and imaginary parts of the eigen-
vector of the matrix X(t), we can choose an R(t) which depends con-
tinuously on t. In addition to this, clearly det R(t) # 0. For
t = 0, we have: eI¢ = R(O)eI¢R(O)—1, and since ech = Ecos¢ + Ising,
R(0)I = IR(0), from which we easily obtain R(0) > 0. Hence,
detR(1) > 0. For t = 1, e 1% = R(1)e!®rR(1)™%, R(1)I + IR(1) = O,
which implies that det R(1l) < 0. The contradiction which was
obtained shows that the matrices eI¢ ¢
by a curve of the type described above. However, this does not

and e cannot be connected

contradict Theorem 2.2, gince the eigenvalues ei¢ of the first kind /332
of the matrix ei? and e *%of the matrix e~ 1o do not. coincide, '

11We note that only at this point we used Theorem 1.2. The proof of .
the first proposition was based on the decomposition (1:2) which can
be easily proved directly.
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loew L) £¢ (‘e—:lv').\

The main purpose of this section is to prove that not only the
complete image of a point but also the complete image of any region
(of an open connected set) is a connected set. First, we introduce

the following definition.

Definition. The mapping x' = z(x) of the topological space
= {x} onto the topologlcal space R' = {x'} is called weakly open
at the point x4y if a point ‘onR{QMFﬁxb can be found such that for
any neighborhood Oy of the point there exists a neighborhood oxé of

the point x! such that O, <:C(O%)\

0
A mapping which is weakly open at each polint xQGRJ is said to
be simply weakly open.

. This definition is an extension . of the usual definition of
an open mapping (the mapping x' = g(x) is open if for any p01ntxoCRf
and its neighborhood O, there exists.a neighborhood Oy, of the
point x} = t(xy) such tgat O, <:C(0aﬂ ). An open mapplgg is of
course weakly open. The following example will show that the con-

verse proposition is not true.

Let R = {£, n} be a plane, R' the set of points which 1lie on
the coordinate axeést § = 0 and n = 0 in R, with real neighborhoods
which are defined. We plot in the plane R the set of curves

té;;}??ﬂh 1&m§:ag:m4 . To each point x5 = (£45 ny) in R, we
make correspond the point JKER%:Rthich is obtained when the line
tﬁjf=/€£_wgékﬂ is intersected. It is easily seen that for any
point X, which lies on the bisectrices of the coordinate angles
which is different from the coordinate origin, for a "sufficiently
small" neighborhood OXO’ a neighborhood Oyy does.'not exist such
that?Q%C:CK%). Thus, this mapping is not open. However, as can
be eésily seén, it is weakly open (we must take Xg = xé).

Lemma 1. Let R = {x} be a locally connected topological s.paceli2

12We recall the definition. A locally connected topological space
is a space in which, for every point xg and the neighborhood Og,
there exists a nelghborhood © € Og which is a connected set. Con-
nectedness 1is defined in the same sense as before.
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R' = {x'} be a topological space and x' = £(x) be a continuous, weak-
1y. open. mapping - of" R onto R' such that the complete image of any
point ‘x CR_J is a connected set in R. Then the complete image

of any domaln in R' will be a domain in R.

Proof. Let G' be a domain in R' and G be the complete image.cf “i
G'. G is an open set, so that z(x) is a continuous mapping. Suppose
that G is not connected. Suppose that the points X, and x, cannot
be connected by a continuous curve in G. We denote by Gy the con-
nectlng component of the set G containing X1, 1.e. the set of all /333
MXCF f which can be connected with Xq by curves which lie in G.
Since R is locally connected, G 1s an open set, i.e. G is a
--domain., Let Gy = GXGl. Then because it is locally connected, the ty
set G2 is also open.

We introduce the notation

Ln: M), wm=U(n), G =t((G), Gé,%ucza

We will show that the intersection GlﬂG% is empty. Let us
assume that the proposition is not true. Then there exist:
@ﬁEEE;E_FG“ such that \CWO——CQQ‘—J €6nG . By definition
the set of all y in R such that ¢(y) = y' is connected. Therefore,
y1 and Yy, can be connected by a contlnuous cyrve in this set which
is contained completely in G. But then the point Yo belongs to Gl‘
Hence, the contradiction shows that G'(\ G' is empty. 13 It follows

that G, 1s the complete inverse image of Gj (J = 1, 2). Since the

J
sets Gj are open and the image x' = ¢(x) is weakly open, the Gj
(J = 1, 2) are also open. We will show that G' is not connected.

We select arbitrary';zIEGLz;EG” and we assume that z' = f(t),
0 &t <1 is a continuous curve connecting the points zi and zé in
G'. We denote by A the class of all: tc[6—~\such that for all t' < t

]()CGh K)I]\Af - The sets A and B are not empty. In fact,
Slnce~f@)€0b fU)CG» Glu Gn»Gl and G5 are open and f(t) is a

13We already obtained the result that G' is not connected in terms
of another definition. ;
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continuous function, all t sufficiently close to zero belong to the
set A, and all t sufficiently close to one belong to the set B. If
Q;flé./l, t, € B ,» then t; < t,. Therefore, {(A; B) is-a Dedekind -
cut. Let to_be the corresponding number 0 < to < 1. By‘definition
of 'ty in any neighborhood of the point [illegible] = f(to), there
are points belonging to Gi and Gé. Since Gi and Gé are open, and
do not intersect, zé belongs either to Gi ror to Gé which is

not possible. Hence, G' is not connected.

Thus, assuming that G is not connected, we obtained the result
that G' is not connected. Consequently, G is connected, which proves
Lemma 1.

Of course, Lemma 1 remains valid if we require that [illegible] =
z(x) be an open mapping. However the mapping ¢ = ¢(X) under con-
sideration is not open at the points 'Xﬁfi\ which correspond to the /
canonical matrices for the eigenvalues which are equal to one in
absolute value. (At all other points, it can be shown, that this

mapping is open.) This is easily shown for the case k = 1.

R —_— -
. b .

Let

(1 ey. o ;
Xo= (1.
o (o 1)’ e# 0 U(Xo) =l =(1,1)

The matrix‘X

g "lies" on the cone 't with center at the point E in /334
the torus @[ (see Fig. 1). Consequently, either "unstable" or '
"stable" matrices are close to it for which the multipliers are
arranged in a certaln fashion, for example, for which the multiplier
of the first kind lles on the upper semicircle (depending on the

sign of €). But_§;=k”£eqq/ can be close to the pointﬁoﬁﬁl
poth for ¢ > 0 (multiplier of the first kind on the upper semi-
circle), and for ¢ < 0 (multiplier of the first kind on the lower

semicircle). Thus, at the point X, the mapping ¢ = z(X) is not open.

We note that the statement of Lemma 1 is not valid if we dis-
regard the requirement that the mapping x' = t(x) be weakly open.
Thus, for example, let R be the square abecd without the side cd,
and let R' be the circle. Projecting all points of the square onto
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[a,d) and "convoluting" the half-open interval [a,d) into the
circle, we obtain a continuous mapping x' = z(x) (which is not
weakly open) such that the complete image of any point AOCP'i is
a connected set. However, the statement of Lemma 1 is not valid.

Theorem 2.3. The mapping ¢ = ¢(X) is weakly open.

Proof.: We will consider an arbitrary F[ng-' We will first
assume that z, does not have repeated multipliers on the unit circle

and on the real axis. Suppose

[ i . { -1 ey :
\Co={re,~p,' re”", p, e, et Ly T, L) L (2.2)

(first we write out the multipliers of the first kind). To the
element z, we make correspond the canonical decomposition

————— e — - re ~

[ p 0 Iy ooy s
!T-AOT——( 0 r'lel‘q’)_@(o p—1>@e?:@.eq’ EB) (2.3)

For the matrix T, we take any matrix such that

?T*1—1r=< b g)e @1;?@1;1.@-...1 (2.1)

Then the matrix XO will be simplectic with eigenvalues equal to the

i i
multipliers of ¢,. The el¢1, e ¢2, .... will be the multipliers of

the first kind for the matrix XO. Thus, ;(Xo) = Ty

A11’FEE{ which are sufficiently close to g, have the form

1 '!IV _'/’ : ip” “f ' N i »
L= {r'e', r'e W, PAE TP AL R S }..& (2.5)
LN 2 -~ il .

To each ¢ we make correspond the matrix X using the formula

‘ 3 sz . ’ A L ’
TﬂXT=:(’e 0] )eg(“ )egeﬁl@ PRl S (2.6)
; 0 (f’)1 Y 0 (P)

-

s - B

By virtue of (2.4) and (2.6),‘&5‘7‘ and z(X) = ¢. The matrix X
will be arbitrarily close to Xd; if the numbers ¢', r', u', ¢J ...
are sufficiently close to the numbers ¢, r, u, ¢1, «++.. Hence, /335

for any neighborhood OXO we can find a neighborhood 050’ such that

l0.ct(0%)."
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We will now assume that z, has repeated multipliers on the unit
circle or on the real axis. The matrix _xné© . will again be defined
by formulas (2.3), (2.4). However, now g in~any‘arbitrarily small
| neighborhood of z, can have a form which is different from (2.5).

We will consider three cases:

Y

1) for z, the multipliers coincide at the pointsfm=:eﬂ%#=il-i ~

-

2) Py = %1 T
3) the multipliers coincide at the points Po = M u_l on the

real axis.

Of course, 1t is possible that for ¢, different cases can occur
for different multipliers; and several multipliers may exist for

which the same case occurs.

Suppose that my multipliers of the first kind and mzrmulti-
. i
pliers of the second kind coincided at the point Pg = e ¢O.

In the first case, to each fourtuple of multipliers (two of
the first kind and two of the second kind) for go : , o

\L\‘:_o={ ce e T e e, 1y, u
- s Al . e i

~3may correspond a fourtuple of multipliers for 7 which do not lie on
fhe unit circle:

V:—“ iv —ip T P t?
KC'—-{.... e, re T, e e }\ (2.7)

In the second case, in addition to this, to each pair pg =1, pa =1
of multipliers of the first and second kind for the element g,

COZ{,I,y])-}-:\ X

may correspond the pairs u, u—l for the element ¢,

and similarly in the case pg = pa = -1, .

In the third case, the ¢ which have the form

v - ; . . LT ;
| i —-i —1 i —1 14

=N RN -2 ¢ SUUEE S G A A “
i .. ' _
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may be close to the element r,
= ... t.”'ﬁ**’:.'- R RN

' To the multipliers Zo and ¢z which have the form (2.2) and (2.5),
we make again correspond the factors in the right member of the de-
composition (2.3) and (2.6). For these factors, the arguments do
not change; therefore, we will not write them out below. In the
sécond case, these arguments:— also do not change. The factors of

1

the matrices XO and I~ which correspond to the first case have

the form:

coo Lo U : Tugn, | o
X Te=dm@drm. . =0 0 Yo, /336
. I ] ' v- 0 e,lY" ;
P - - -
L _ , -L0
TI' T=1"@— 17 ... ::(13 l)ED
- | O =5/
It is clear from these decompositions that ' X0E@L((X0==5o . We

let T = T,S, where\So#LSGBE%_Q , and S is an orthogonal matrix of
order four which has the form

..l'. S:—,l_- Ez Ez) .
VE ';12 1y

We then obtain:

- o ) e

N e R RV

2 TQIX5T0?=S'( ) :e“% -3. b ...= 0 e“%'EB eee s | (2.9)
T‘I“;T s 0 j S'@ —( ° ‘E2)€§ | |

. fﬁlo ~ 15, N - U N (2.10)

We make correspond to the element ¢ (2.7) the matrix X, defined by
the equation

T;)-JXT() = (re

" Iap 0 CD . .
: 0 yj"'g"") o (2.11)

31



e

From a comparison of (2.10) and (2.11), it follows that,?ﬂgé{.,'”
Here, ¢(X) = ¢, and if ¢ is sufficiently close to g,, then r 1is close
to 1, ¢ is close to ¢0 and the matrix X is close to XO. Thus, for

any neighborhood Oy a neighborhood OE& can be found such that
10, (0x). ] 0

L g—

The matrix S can be defined as follows. The matrix must satisfy
Egqs. (2.9) and (2.10). We seek S in the form

(2%

1

Substituting this expression in (2.9), with W“%==Uﬁwyﬁ}4-Mnérlb

’

we obtain:

oG- 3]

which implies that all matrices A, B, C, D commute with I2.A matrix
which«commutes‘with Iz.has the form aEé1+‘bI§ (incidentally,we can sim-
ply try to find 4A,B,C,D Df'thiS'fOPm); The set of matrices {aEé + bI2}

forms a field which is isomorphic to the field of complex numbers

{a + bi}. The complex conjugate corresponds to the transposed

matrix. Making correspond the complex numbers a, B, Y, § to the
matrices A, B, C, D, we rewrite the remaining equation in (2.10)

in the form

IEHIR RN

This is equivalent to the equalities /337

[laj =18l fil=3t o ==t |

From the above, we easily obtain the general form of the matrix S
which satisfies relations (2.9) and (2.10). In particular, we can
take : - L

- 1 ‘
e=b=1m Ty CTYR
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We then obtain a matrix S of the form shown above.

Finally, in the last, third case, we have:

T"%_XOT:(” ,91)@(‘ g1>®4

-

\
I
0w 0w , " (2.12)

T ]T—I_l@b @ ...

”Xn(@ %(\0——% As before, we let T = T 5., whereis0 SdaEm 4

and S is the fourth order matrix
.. /1000
" ._loolto
0 00 1

& e Y
e

Then, from (2:12), we obtain: = . o o

e —— ST . B : .o [P S -

\ . p.O

O O

Do .

(2.14)

(2.15)

Formulas (2.14) and (2 15) 1mp1y that X(H@ and from a comparison

of (2.13) and (2.15) it follows that ‘the matrix X is arbitrarily
close to XO if the element ¢ is sufficiently close to c Thus,
also in thls case, for any neighborhood OXO there ex1sts a neighbor-

hood OCo such that occi(Ox)I

This proves Theorem 2,3-1u
1ITThe proof is 1abor10us because of the comparatively complex canonical
structure of the matrices: x(@ﬂ . Obviously, logically it would be

simpler to prove first the analogous theorem for the algebra of the
complex matrices K = iIH, H¥ = H, which are the matrices of symmetric
transformations of pseudounltary spaces which have a 'simpler:cédnonical
structure, and then using the Cayley transformatlon pass onto theq'r\
group d@?of I-=unitary complex matrices U, U¥IU = I, and then by

virtue of . @Cfi{derlve the theorem for the group Qﬁ. However, this
approach is just as long. .
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The following theorem which will be used below follows from /338
Theorems 2.1, 2.2, 2.3, and Lemma 1:

Theorem 2.4. For the mapping ¢ = ¢(X), the complete image of

any region in I is a region in _@L

3. Structure of the Group ﬂ@j

Theorem 2.4 enables us to reduce the study of the structure of

the group ;Q} from the point of view which 1nterests us to a study
of the set r. We will first consider the set! O

Following [7], the elements z, and COGO' are said ‘to be of*
the same type if when we move in the counterclockw1se direction along
the unit circle from the point p = 1, the multipliers of the first
and second kind for %4 and Z5 alternate in' the same manner. I.e. ,'gi
and ¢, are of the same type if a continuous curve g (t) exists which
connects El and c2 without intersecting FO There are 2k possible
positions for the multipliers of the first and second kind on the
unlg circle. We'will denote them by Mys cves ng- We will denote
by 0“% the set mE‘W for one type u = My Clearly, omﬂ is a
domain. We denote by LOWWthe complete image 9%HW1n the group‘qﬁg
By Theorem 2.4 @W% is also a domain.

Below we will need another pfoperty of . the domains 1@m\.

Ryl

Definition. The set iﬁc@ﬂ is said to be singly connected in
t@ﬂ if any closed curve which lies entirely in %ﬁﬂcan be contracted
into .a point in the group -@}

Clearly, a set which is singly connected in \@l need not be
connected ("into itself") (see, for example, the set sm% in Fig. 3,
below).

We will show that the domains H?g]are singly connected in 5@%
LetX(t), 0 < t € 1 be a closed curve 1n TEW’
eigenvalues of the matrix X(t) on the upper Semlclrcle in the order

We will number the

of increasing arguments. Since elgenvalues Py (t) of different kinds

are not encountered as t varies, O <t <1, every point Ps (t) moves

o
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as 0 € t € 1 along the upper semicircle and pj(O) = pj(l).' Hence,

N

—

ArgX(t A -ZAargp, (t)*
j=1

(the sum contains.only the multipliers p;'of‘the first kind). By
Theorem 1.1, the curve X(t) can be contracted into a point.

We prove the following theorem:

ot

Theorem 3.1. The set *CCZQW decomposes into ok nonlntersectlng

ms1ngly connected domalns E@wan the- group @4, each of which. is~

o

'characterlzed by a. certaln dlstrlbutlon of the multlpllers of the f:#’

LN

,flrst and- second klnd on the unlt c1rcle

This theorem was proved in the work of I.M. Gel'fand and V.B.
Lidskiy ([7], Par. 6 and Par. 8, Lemma 4).by constructing actual /339
curves. For stability regions, this approach 1s undoubtedly simpler,

8since in stability regions all matrices are reduced to diagonal form.
.When'the instability regions are studied;z“such ©.curves can not be
constructed, and moreover their deformations can not be studied be-
cause along such curves the canonical structure of the matrix can

change 1n a very complex way (see Theorem 1.2).

We will now consider the set JZI When k = 1, the set“% chﬂ
decomposes into two domalns 57“Wandnﬁ*5\whlch correspond to two y
poss1blewnnstab1e types Vl and Vo By Theorem 2.4, two domains '

andtﬂ”m\lnto which Jg{bdecomposes correspond to these (see

also Fig. 1)
Theorem 3.2. For k > 1, the set;é%‘ is connected.

Proof. Since the set: QZ——CL%ﬂ is clearly open, by-Theorem 2.4
it suffices if we prove that® *%7 is connected.

. We connect an arbi-

Let E]c(,:{i—: L tie e
trary point ?é?%ﬂ'WfEnﬁgo by a continuous curve which iies'entirely
in fJ? '

b .

We first assume that z has multipliers on the positive real
axis. Then these can be brought to the points-p = 1/2 and p = 2.

AN
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”"'decomposes into a countable number ‘of "domains

After this, all remaining multipliers may also be brought to these

- points. 1In the process, we do not leave 5?L since during the de-
formation’ some . of the multipliers always_remalnwxln the interdor
off the unit circle. If for r there are no multipiiers on the posi-
tive real axis, but there is at least one fourtuple. of multipliers
which do‘not lie on the unit circle and on the negative real axis,
these fourtuples can be shifted continuously onto the real positive
axis while staying in 2@}, and the point which is obtained, as shown
above, can be connected with ¢,. All we must analyze now is the
case when for ¢ all multipliers which are different in absolute
value froﬁ_one lie on the negative real axis. If theilr number is
greater than four, the fourtuple. of multipliers can be displaced

into the region ﬂpl#=L 89#=QW end we have the previous case.
Finally, if there are only-two multipliers, the remaining multi-
pliers lie on the unit circle (k > 1!). A pair of these multipliers
(of the first and second/kind) can be brought to the real negative
axis and the :fourtuplewhich is obtained can be shifted to the region
ﬂ?ﬁ;?{gé;kﬂ . Thus, we again have the preceding case.

Thus, in either case ¢ can be connected with in the region

b ol e
@ﬁ , 1. e.“gf] is connected which was to be proved.

The connectedness of the set (ﬂW'when k > 1 "is not convenient"
in a certain sense. In the next paragraph, we will show that the
connectedness of the set {é% implies the connectedness of the set
‘% (when k > 1). At the ‘same tlme, when k = 1, from the fact that

lj?J decomposes into two domains ﬂ“ anduf““ s, 1t Eollows that | JY
;

(¥) \ e /
J(nl (V ==, Vh RETR 12-
”*‘O *1 io \For eachwof these domains, the following theorem [12]

is Valld

If Hy (t) < H(t) < H, (t) and the matrices H, (t) and H,(t) belong
to the same 1nstab111ty reglon sz @-—vbvmn.-O il t2 then the

matrix H(t) belongs to the same 1nstab111ty region.

From this theorem, various efficient instability criteria can
be derived.WHat'is'tHe‘analoguelof the theorem for the unstable case
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when k > 1? The proposition which suggests itself, namely that the
theorem holds for the entire set - g@ is immediately refuted by
simple examples. Nevertheless, it turns out that the set lggYCan

be broken up by some "surface" T into a countable number of domains
in such a way that for some of these domains the above theorem holds.
The set I' is the set of those systems(0.1) whose monodromy matrices
have repeated multipliers of different kinds (see table on p. 10).

We will consider %1 and ‘coeyy\fﬁ. We will say that g, and
Lo have the same multlpller distribution (or simply the same type v),
1f._1) they have the same type of multiplier distribution on the
unit circle in the sense defined earlier, 2) the multiplier pairs.
on the real positiveaxis for. By and.. o have the .same parity,

3) and if the same holds also for the negative real axis. 15

We w111 say that X, and:X?egz\Eﬂ‘have the same type of distpiguﬁion
of eigenvalues if c(Xl) and g(Xz) are of the same type. ' =

' Theorem 3.3. The set (§?§T‘ is the union of N = 2(2k - 1)
simply connected non-intersecting domains |F" (¢ =vs 3~_,mﬂ
'in }3 , each of which is the set of all matrlces-Xeﬁf\PlhaVlng a:
fd%stributiohgofweigenvalues*of'the same ?ype.

Proof. If we denote byié%QT the set {z} of a given type v,
then )

EAS ) '

F o.r . _ continuous deformations g, for which the multipliers of
different kinds do not coincide, only.fourtuples of multipliers can
either leave or be brought to the reai axls, but for such deformations
the type ¢ does not change. On the other hand, it is clear that
elements ¢ of the same type can bedeformed by such deformations into

one another. Thus, the sets ™M are non-intersecting domains.

By Theorem 2.4, thelr images, the sets(§9gwti@\ are also non-inter-

secting domains.

15It is easily'seen that condition 3) follows from 1) and 2).
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/.
We will show that these domains are- 81mply connected in g@? . /341
Let X(t), 0 £ t £ 1 be a closed curve in J7“7 . Along any con-
tinuous curve (not necessarily closed) for multipliers of the first
kind, outside the unit circle
- DA Argg =0, l (3.1)
T
since these multipliers are distributed'éymmetrically relative to
the real axis. Along a closed curve for multipliers of the first
kind on the unit circle equality (3.1) also holds: This is proved
in the same way as for the domains IOWW .  Thus, Ang(Ul .
By Theorem 1.1, the curve X{(t) can be contracted 1555 a pblnt i.e. -

the domains Lm“{ are simply’ connected in gﬁ

We will determine the number of different types”v. All types
v will be broken up into two classes: 1) the types v for which |
the elements ¢ have an even number of multipliers on the interval
(-1, 0), 2), and types v for which the corresponding number is odd.
We will deform ¢ by displacing the fourtuples of multipliers without.
encountering multipliers of different kinds from the region lpl # 1
to the positive real axis. For the elements r of the first class
after such deformation, there will be 2] multipliers on the unit
circle, and the remaining multipliers will lie on the real positive
axis 0 € j < k. For the elements ¢ of the second class, there will
be two multipliers on the negative real axis, 2j on the unit circle,
and the remaining multipliers will lie on the negative real axis
0 € j < k. Since on the unit circle the 2j multipliers of the. first
and second kind can be distributed in 2J ways, the total number of
"unstable" types v is equal to

T e | - : '
\\ T'~222’~‘2(2h 1)J | |
; j=0 . -

-

This proves Theorem 3.3.

Theorem 3.4, The sets(;ﬁz and im \are domains for k > 1; for

k =1, f}%Jis a domain, and kyﬁé decomposes into two non-inter-
secting domains: —
. ﬁM M \JM()J

38



In fact, repeating the proof"Of?Theorem 3.2, we obtain the
result that the corresponding statement is also valid for the sets. :
@erﬁj . When k = 1, lAM*’ls the set of elementsC——L,‘ T} kfp<:i:]

for| w0 Ox\——u’/e::} . . '

Theorem 3.4.follows from Theorem 2.14.

Lemma. Let '“R%be a domain in the group ng The arbitrary
matrices Xl and X2 from .QA can be connected by a contlnuous curve-
X(t), 0 €« t € 1 which lies entirely in QR] and which has the
property that dX/dt exists everywhere except possibly at a finite

number of points ¢ 0/’t<< ol <ty —-v , “a.n dthe derivative /342
J\-—————~—-- - .
¢dX/dt 1s contlnuous ‘on the intervals (tJ tj+1)f (From here on,

we will call such curves piecewise smooth.)

It follows from this lemma that any two matrices from t@ﬁ%can

be connected by a pliecewise smooth curve.

Proof. Let us connect X, and X, by a continuous curve Xo(t),

X, (0) = Xq,Xg (1) = X,. We will encircle each point Xo(t) by a
nelghborhood TO\such that: 1) “Oczmﬁ , 2) for any two matrices

"X’X”FOJ the matrix X'+ (X")"} has no eigenvalues equal to -1. 16

From the set of coverings Ot we select a finite covering Ot 2 Oj

(J =1, 2, ..., q). Discarding the unnecessary neighborhoods, we
will assume that the intersections OJ\OHJ are not empty. We select

an arbitrary point :,$(2(10H4(F—12 ”’Q"Uj . We set Xy = Xl’ o

X& = X2. We will prove our statement if in the neighborhood OJ

we connect the points Xj—l and Xj by a continuously differentiable
. curve.

The transformation
Y = x-(xs.)‘l

will map the nelghborhood 6j into some neighborhood O of the
matrix'(gé@\, and the matrices Xj and XJ+l into the matrices E
and-YO = X%+l (X') 1, where any matrix Y in this neighborhood
16

This can be done 51nce for a sufficiently small neighborhood Ot N
;the matrix X'-(X")~1 is arbitrarily close to the unit matrix.
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has no eigenvalues which are equal to -1. Therefore, for all
matrices in this neighborhood the Cayley transformation

iy Lk - cp—1c | ’
;czzllirf; y—E \_A (3.2)

is defined. Here C is a real symmetric matrix, such that det(E+IC) #
# 0. Conversely, any such matrix C defines in the second equation

in (3.2) the matrix Q{E@ . The neighborhood 0 will be mapped

into some neighborhood O of the point C = 0 of ?fi%;i% ~-dimensional

Fuclidian space of symmetric matrices. The points'Y‘= E and YO will
be mapped into C = 0 and CO. Connecting the matrix CO with the
matrix C = 0 by a smooth curve which lies in O, and making the in-

verse transformations, we obtain the required curve X(t).

| Theorem 3.5. Let Xl(t) and X2(t), 0 € t € 1 be piecewlse
smooth curves and let U(t, s), 0 € t,s < 1be a deformation of one
curve into the other T

U(t,0) = X, (), U(t,1) = X, (t)

U(t,s) is a continuous function over the set t, s for 0 < t,s < 1.
Then a deformation V(t,s), 0 < t,s € 1 of the curve Xl(t) into the
curve X2(§) exists such that:

1) V(t,s) is a differentiable function of t and s, 0« t,s « Igh/3&§

except possibly for a finite number of values of t and a finite

number of values of s; when s is fixed, V(t,s) is a plecewise

smooth curve.

2) The curves V(0,s) and U(0,s) and also V(1l,s) and U(1l,s)

are homotopic’; If U(0,s) = U, = const, then V(0,s) = U,,  if
U(l,s) = U, = const, then also V(1,s) = U :

Proof. Let

O’
1

]
over all X,ﬁYﬁﬁ%\satisfying the condition

det(X + Y) =0
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Since for %X&;@Jdet X = 1, clearly e, > 0. We select an e, >0
such that for

i"zi—t'ms—s'l\
’L']U(f', s’y U (t, s) :.|<€o-'

We break up the square 0 € s,t € 1 by the lines t = tj’ s = Sy
parallel to the axes t and s into a number of rectangles whose sides

are smaller than 6. For

]E§f<fm, %<S<&&W (3.3)
e T

U(t,s) belongs to the neighborhood which with the aid of (3.2) is
mapped analytically onto the neighborhood O of the p01nt C = E.
We replace as shown above, the curve U(t,sk) by '‘a pilecewise  smooth

curve V(t,sk), and we can assume that ﬂVdu%i exists and is continu-
. y dt -
-ous when t #_tj. Then, in each rectangle (3 3) we interpolate the

corresponding C(t,s) linearly. The matrlx':of functlons V(t,s)
which is obtained satisfies conditions 1) and 2), which was ¢ to

be proved.

Because of this theorem, below we can restrict ourselves only

to considering piecewise  smooth curves.

k., Structure of the Set;®¥{ﬂan\

To each matrix H(t) of the coefficients of system (0.1) cor-
responds the monodremy matrix F-®{HU]C~] of system (0.1). The
mapping X = ¢[H(t)] is clearly a continuous mapping of 1@\ ontoé@)
(sée, for example, [12], pp. 38-39).

As we have shown in Par. 1, the "point" H ()C@\ can be
. ridentified -With the pilecewise; smooth curve an)e@}uWhichtb?gin§. A

in E and ends in the point X = ¢[H(t)].

Below, when we discuss curves., we will have in mind plece-

wise smooth curves.

We will adopt the following notation. The topological product
of the paths Xl(t)‘and X2(t), 0 tg 1, Xl(l) = X2(O) will be denoted
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by Xi(t) x X,(£). Thus,

i ) ) T [.——f— 1
‘ ' o<t <=

{ : |x1Qo for 0%::\

ixlu)xXe()“"XaU) LT

Lo T lngtm-n for nggtggL

! i

s
w
g
o gl

¥ r)
| - — e FESES e

The paths/traversed in the opposite, dlnectlon will be denOted:TJ
by X(t)g.~1 as follows:

[x@exa=n, o< q

A closed path X(t) passed 0ver m times w111 be denoted by X(t

)[m] .

All the operations above on piecewlse~ smooth curves give again

- piecewise - smooth curves.

We will call two curves X4 (t) and X (t), 0 € t € 1 which begin
at a common point and end in some set ;%k&ﬂ homotoplc mOdWIO J.iﬂ ,

L
and we will write

g e ~ o

xl (t) ~ xn (t) ‘niod s.v_e,/ s

if they can be deformed into one another without displacing the

endpoint from ;ﬁ%g
Homotopic curves will be denoted as follows:
Xl(t) m'Xz(t)
A necessary and sufficient condition that Xl(t) and X2(t§ be
‘homotopic is that YHEMT 0. t & 1,0760) = X (1)5Y(1) = X, (1) éxdst:
in de)fﬁd( such that the paths X; (t) x Y(t) and X (t) are homotopic.

In fact, if such curve ex1sts, the deformatlon

S e —— e - - T—

1‘3 (Kl ,0<t<$,

LY (t s)=1 - ‘ -

{ o Y[@—+l)t——ﬂ, 1ok,

‘ - 51*_1 ) , ‘
0 ¢ s < 1'deforms the patth (t) 1nto the path’X‘(t)xY(t) which: can
be deformed into Xg(t) without displacing thg_endp01nts._ During

both deformations, the endpoint remains in gi@ ; hence, (4.1) holds.

Conversely, if (4.1) is satisfied and X(t,s) is the correspond-
ing deformation, then we can take for Y(t), Y(t) = X(1,t).
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Theorem 4.1. Let ;Eﬁ\be a domain in ‘?ﬂ and \?} be its com-

plete image in| @ D ( wj__wj Tf ¢ ﬂR is a simply connected set in
‘ Qﬂ s then WW decomposes into a countable number of homeomorphic
domalns‘{W%X
e e :
b o o
M= U M,

'\

Qﬁn,ﬂ M, =0 \ when \\/1.;'-# nzv} (4.2)

»
P S

W,

such that’ m?qit)——ﬂq o
M

Proof. We select an arbitrary point VAOC%q and we connect it /345 «

by the curve X( )(t), 0< t < ]_w1th the natrix E. E@dls the set of '
yen]

all curves which begin in E and end in leln such a way that]

(]

The set of curves X (t) which are homotoplc-”.“_../modulou %&
(‘__‘__
will be denoted by My, -J‘OC“J“

Let U(n)(t),‘o-s t € 1 be a curve which begins and ends in E
such that : : .
L ArgU™ (1) lélﬁ,Q“’?/

(For U(n)(t) we can take the curve (1.8), Par. 1)

L
The curve

(M ey = 0 gy « x(®) (4) (4.3)

Tan
belongs to VQ&. The set of curves X(n)(t) which are homotopic
.modulg 1‘3 , will be denoted by “«m,,,;m c‘m] . Clearly, the o
sets .MAare connected and open, and J@(ﬂ() *{J

‘t;::

Y

Let I‘X(t)csm X(l) ' 1\ 17 )

We will show that im- U,

We connect Xl and XO by the curve 1 U)L“R 0Lil ] e The curve
X5 (t) = Xy (t) x Y(t)
which consists of the curves X, (t) and Y(t) ends in X,. Hence,

C,Arc ‘< (z‘)l - Arg x“”(t)l‘ —2 =i i(

17we note that when we write *@Q@ggﬂ , We mean that the curve X(t)
pelongs to the class of curves i% . The notation |[X(D€Y means
that for a fixed t the matrixﬁﬁdjgﬁ&:@} . )
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for some m = 0, #1, i2, N Then,

Ar(j}\ t) \0—— Arg X('") t) =0, /
| - /
i.e. X, (£) ~ X(m)(t) Hence, /

i

oz : /
Xl(t) (’")(t) mod&TR(

e e e =

and X, (1) ) csmm

The domains ?m&T do not intersect. In fact, let
e

X ) cm,rmm(,h nﬁang./

e =

We then have

kX(t)"NX“'O(t) modﬁt, X() X‘“’)()mod .

r— - - T

Hence, ! ' - e
&X(n.)(t) X("‘ﬂ)(t) modga

Then a curve “Y(ﬂEﬁﬂ ex1sts such that

‘.X("‘) t)xY(t) X—‘"@

The curve Y(t) is cldsed and A

Arg Y (1) lo — Arg X‘“” <t) Arg X‘“*’ (t) = 2 L - no ~+0. ﬁ

Hence, the set Wﬂls not Slmply“connected in Jq The contra—
diction which was obtained shows that the domains umh,and \%h]do

not intersect. . (

What we must still prove is that the domalnsiﬁnz are homeo-
morphic to one another. To each curve XR U)Gme we make correspond
the curve X (t) in accordance with :

X () = X(t)- U(n)(t) (4.4)
Let - : | |
for %ﬁif%%;,
fof (»‘%géf\’\/'l’

4y

~

Lo - w
- =

. B @)



]

____________ . |
g Xo(t,s)= N v for

| - ‘XQM(t“'U(Fi] for

where k = s + 1, 0 £ s € 1. The deformation

lXU,$¥ans%Um@S% 0<s<;)

deforms_the-curve (4.4)(s=0) into a curve of the form (4.3) (X(O)(t)
= X, (t)) belonging to mtiw1thout displacing the endpoints. Hence,
a)ewl and formula (4.4) establish ‘the homeomorphlsm of the domains

?Xiﬁ* and m%\ . This proves Theorem 4.1. !

Remark. The following rule for numbering the domains &ﬂﬁ* follows
from the proof of Theorem 4.1. An arbitrary index can be assigned to
a fixed domain-'mf\. Then the remaining domains "mh{can be numbered

in such a way that for any curves\ X, U)tﬂh and lx wn# the relation
h

T A@&UW—A@&UW_A@Ymk+M%—mM[ (4.5)

 will be satisfied, where Y(t) is any curve which lies entirely in

Igﬁh , and which connects the points Xl(l) = Y(0) and X2(1) = Y(1).
Let %t| be a domain which is not simply connected in (/®] -
Then a closed curve V(t), 0 € t <« 1 exists in it

tAgV@W:%m%Q

e

W1thout loss of generality, we can assume m > 0. The smallest m /3“7
will be called the 1ndex of the domain mﬂ . Domalns which are

simply connected in J can be assigned an index Wthh is equal

to zero.

Theorem 4.2. The complete image E@? of the domain Qﬁﬁf@J
with index m > 0 decomposes18 in 'ﬁlintd m mutually homéomorphic
domains W\ (j = 0, 1, ..., m-1). In partlcular, if a closed
trajectory V(t), 0 < t < 1 exists in kﬁn\such that Ehgv(0b==2ﬂ. ,

18When we say that a set mﬂ decomposés into a series of domains”mpx
we mean that this set is a union of non-intersecting domains mz .

5
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:f@{ "is.a domain.

e "Proof. Let V(t) be the closed trajectory which exists by
hypothesis, such that AmgV Uk——an>ﬂ)D%0C@ﬂ . We will connect

the matrices E and V(0) by the curve X( )(t), (O)(O) = E, X(O)(l) =
= V(0). Let U(n)(t) be the same curves which were used in proving
Theorem 4.1, and define X(n)(t) by formula (4.3).

We will denote by m{\(g =0, 1, ..., m=1) the set of trajec-
tories which are homotopic to X(J)(t) Lmodulof,‘ﬁﬂx . Clearly,
ﬁﬁ& are domains and k}m9)==mt\ ' ‘

1) We will show that
(4.6)

Let lxa)ewz X(U_mxegﬂ . We will connect X with V(O) by the
curve Y, (t), 1'my_qx Yoa)_.V(m,yya)ewﬁ . Let

L AIX (O x Yo () x X0 0 = 2en.

K N . N
AL SN U I VLR

Then e . o R .
FArg [X (8 Yo (8) x V ()™ x XV ()] [§= 22 (n - o)z |

We choose k (positive or negative) in such a way that

B e Gt

t.ﬂ ’ ”O<}=n+hm<m

Then 1 PRI
:" Arg [X (£) x Yo (8) x V ()™ i =2rj + Arg XO () |5, .
b I

I

i.e. 1, Angaxyank Arg XD (1) Jp,

e R b - - — [ IR
where MKQ=YUO%VUW%QA' Thus, BWQXYU%VXMUM \“UﬁW? , which
proves (4.6). : A

2) The domains ;ﬂﬁ\go not intersect. Let

\X (t) C Smk ﬂfmu ' \k°<°l‘<m : \‘
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w
=
(@]

We have X () ~ X® (1) modl, ;X(t) X9 (8 - mod M.

Hence, .
x (t) XD () mod .

__——r———"—f‘—___“~r—~,,, \

Then a curve )/U)thjex1sts such that

X" (t) xY (t) ~ x“’(t) l
The curve Y(t) is closed, since X(k)(l) = X(l)(l) and

Arg Y. =2 }f = );) < om, |

which contradicts the hypothesis that the index of 1%?>1s equal to
m. This proves Theorem 4.2,

e

Thus, we ‘solved the problem which was formulated at the end of
the introduction. The 1ndex m of the domain is usually determined
easily after the domain ﬂyls given.

The connection between the statements of Theorems 4.1 and L.2
and the concept of a:'space = covering 1s easily established.
The following can also be proved. Let @ be the set of all paths
which are homotopic to zero, which begin and end in E and let ﬁjM
be a covering for the group f@ﬁ.. The space ‘Q} is homeomorphic
to the topological product Aﬁén/ , and because of the correspon-
~dence which was established, the boundedness and unboundedness
properties, the order, etc. of the solutions are only determined
by the "projection" H(t) in .

We recall thét fﬁ\is a finite dimensional space of the same
dimension as }@b, so that it can be studied in the same way as the
model of the functional space  :9|.

For k = 1, the statements of Theorems 4.1 and 4.2 are very cleaf.
In this case, as we have shown above, the group [@W is Komeomorphic
to the interior of a torus. The index m of the éomaln %ﬁ_is a
number which indicates how many times the domain \yﬁx"was twisted"

in l@’ "Thus, for example, the indices of the domains *mﬂ andlhkn,
shown in Fig. 3 are equal to zero and two,respectively. If we cut

1
~

Mgﬁ'along some surface S (see Fig. 3) and take the countable number
of pieces which were so obtained, and join these together; identifying

L7



identical points, we obtain the

"rope" Qq, which by virtue of

the homeomorphism K@ d 0{} can

be cons1dered as the’ model of the

space 91 It is easily seen that
in the process w_]we will "gener-
ate" a countable number of domains,

and Wﬁ will "generate" two domains
in 'Q( This is also stated by
Theorems 4.1 and 4.2,

0

o

Theorem 4.3. 1
for k $ Itare domains.

/349 ¢

The set m, for any k and the set o

When k = 1, the sets J |and Ma decompose into two series of
domains '

——

7/11 » ][n y A/’: m /w;n (/l = O_,

e e e

N

To the matrices H(t) from the sets&%ﬁ,%ﬂi correspond systems whose
multipliers lie on the positive real axis,'to the matrices H(t)
from the sets C%ﬁywwgycorrespond systems with multipliers which L.

lie on the negative real axis.

30. The setf<7?aecomposes into 2X series of domains ‘“?\
kp;j;T_Tijzmlb—o £1,,% 2, _ﬂ . The index u determines the tybe of .
dlstrlbutlon of the multlpllers of the first and second kind on the
unit sphere.19

40, The set ‘jf\r}decomposes into 2(2 - 1) series of
domains ,’7” (= cowdhop; i==0, £ 1, £2, ..l . The index u determines

the type of dlstrlbutlon of the multlpllers.

50, 1In 20, 30, 40, the domains in one series, i.e. the domains
which differ#only in the index n are homeomorphic. The numbering by
the index n of domains in one series obviates the statement which

19 30 is proved together with other statements in the work of I.M.
Gel'fand and V.B. Lidskiy [71].
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was formulated in the remark to Theorem 4.1.

To prove lo, we must prove in accordance with Theorems 3.2,
3.4 and 4.2 that in the set inh\and in the sets “9{, .

a closed curve V{(t), when k > 1, such that

there 1is

\ArgV t)[0_2-r ]

e = baads

This 1s obvious. The curve V(t) can, for example, be defined as
follows: L S T T e

‘V(tT vz(t)éB( - )IEB @(”’g ) | (4.7)

1

1

'T‘FlT__lqe;]z@ @1 (4.8)

——— [V SU

where T is any real non-singular matrix satisfying Eq. (4.8), and
the matrix V,(t) has the form

(t)—(S‘(t)O t)_l), m(t)—u (—sypa) vmeR o DSIST
: o 1)\ - When U ;. ) ‘

ﬁl_/z (t)= ’”"m»"‘ ¢ (Atz - 6= (t 3

3
| © ()0 ) a2y Yhen &§<§ﬁ<‘
13-"‘*(‘)—“.(0' w2} HO=I | 3). Co
Trnen e eie—al L e el
‘ ArgV (t) lo = Arg;Vz Os=r¢ @) =2= ]

(. 1
J

\ s

For the set | - M. p:>e’ %or the ‘set ma 1< u < e%, and for k = 1,
the right members in expre551ons (4.7) and (4.8) have only the terms

V2(t) and 121.‘ For the set M% pZ>1]

In conclusion, we w111 consider certain examples.

1. Let D be a region in the interior of the unit circle which
is symmetric with respect to the real axis, and let AB be an arc
on the upper semicircle. For definiteness, let ﬁm;\be a set of
systems (0.1) for which the two multipliers Py and p2_of the first
kind '1lie on the arc AB, and the four multipliers p3, Py > p3*, Pyx
in the interior of the region D (see Fig. 4). We thus specify the
set .’ %hﬁ\ of its "projections" in I in terms of the set%ﬁza. It

\\ pe=

is eas1ly seen that “wua is a domain. Consequently,(Theorem 2.4),
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the corresponding set ﬂh:@] of mbnodromy matrices is also a doméin. |
It is easily seen that'tﬂé;domain_ﬁéi is simply connected in Eé;a !
:'This is proved in the same way as the simple connectedness of the
domains ©®| and ﬂ&??linlﬁga. Therefore,’ Mas|decomposes into a.

countable number of mutually homeomorphic domains (Theorem 4.1).

We will now consider how a concrete closed curve@c&jéﬁbwf is
contracted into a point. We will first consider the mb#gﬁght‘of
Dl(t), p,(t) along the arc AB. If pl(O) = py(1) = py, then p2(0) =
= 02(1) = p, and each curve pl(t), p2(t) can be contractgd ini o an
obvious way into a point along the arc AB. If the multiplier pl(t)
moves. from the point Py to the point Pos then pé(t) moves from
the point Po to the point Py~ They meet at some point n on the
arc AB;because multipliers' of the same kind are. "indistinguishable"
the movement which was described can be considered as the movement /351
of the multiplier pl(t) from the point Py to the point n and back
to the point P> and that of the multiplier p2(t) from p, to n and
then to Y Fach of these curves can be contracted into a point:

Y

the first into the point Py the second into the point Poe

The multipliers in the domain D can be treated analogously
even more simply. The curve need not lie in the domain dufing the

deformation.

.If the arc AB coincides with the entire circle (or, includes
one of the points 1), the corresponding set‘ﬁﬁé/(and therefore
also ‘ﬁhg,mgnf) is not open. In fact, now, the elements z' for
which %hélcorresponding multipliers lie on the unit circle can be

arbitrarily close to the élements ﬂgéﬁﬁﬁ, for which the multipliers

of different kinds coincide.

2. We will conslder the set(iﬁa of all systems (0.1) of order :
twelve, for which four multipliefs of the first kind lie in the
domain D and two multipliers\pl, Po of the first kind lie in the
annulus ' -

-1
0<a<\9\<: ’]’
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which, by definition, does not intersect with the domain D. The
corresponding set 9wa111 clearly be open ‘and connected. A closed
curve ¢(t) exists in it such that Amgca)b-—Q# . - For such a

curve, we can take the curve for which (see Fig. 4) the multiplier

p, moves (in the counterclockwise
direction) along the arc pqmp, of
the unit circle to the point p2'and

the multiplier p, moves along the

arc p,mpy to the point Py- The
multipliers in the domain D either
do not move or pass into one another
arbitrarily. Therefore, the index

of the domain lﬂ\(and hence also
o of Aﬁ¢) is all equal to one, and
ﬂﬁsis a domain in 9.

3. Let now Twa be the set which is the same as that defined g
in the preceding example, with the additional condition: _

\'O<\argplv—— al‘gp2<9<n,\ E "
' : 4

where 6 is a fixed number. The corresponding set v@m,is cleerly a
domain. Let §(U§ﬁﬁ}be a curve for which the'multipliers Py and Po
having completed one revolution on the unit circle in the clockwise
direction return to their original positions, satisfying, during the
movement, the condition (¥). The remaining multipliers, for example,
need not move. Then, ' I

‘\ Argt ()= 4%7 |

It is also easlly seen that for any closed curve\ga)emt]*A%ca)b>>4r\
Therefore, - the index of the domain im$1n &9 (or iﬁfin i»‘ ) is
two. (Consequently, the set ‘Eﬂ lies in é\ as shown for tne set
| in Fig. 3)) By Theorem 4.2, the set L@‘/ls the union of two /352

non-intersecting domains.

A

Infinitely many such examples which can be made arbitrarily
‘complex-can be given.
(Submitted 4 April 1956.)
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